3-1. Classify each of the following trusses as statically determinate, statically indeterminate, or unstable. If indeterminate, state its degree.
a) $b=8, r=3, j=6$
$b+r=2 j$
$11<12$
Unstable.
b) $b=7, r=4, j=5$
$b+r=2 j$
$11>10$
Statically indeterminate to $1^{\circ}$.
c) $b=13, r=3, j=8$
$b+r=2 j$
$16=16$
Statically determinate.
d) $b=21, r=3, j=12$
$b+r=2 j$
$24=24$
Statically determinate.

(a)

(b)

(c)

(d)

3-2. Classify each of the following trusses as stable, unstable, statically determinate, or statically indeterminate. If indeterminate, state its degree.
(a) $r=3$
$b=15$
$j=9$
$3+15=9(2)$
Statically determinate.
(b) $r=3$
$b=11$
$j=7$
$3+11=7(2)$
Statically determinate.
(c) $r=3$
$b=12$
$j=8$
$3+12<8(2)$
$15<16$
Unstable
Ans.

(a)

(b)

Ans.

(c)

3-3. Classify each of the following trusses as statically determinate, indeterminate, or unstable. If indeterminate, state its degree.

(a)
a) By inspection, the truss is internally and externally stable. Here, $b=11$, $r=3$ and $j=6$. Since $b+r>2 j$ and $(b+r)-2 j=14-12=2$, the truss is statically indeterminate to the second degree.
b) By inspection, the truss is internally and externally stable. Here, $b=11$, $r=4$ and $j=7$. Since $b+r>2 j$ and $(b+r)-2 j=15-14=1$, the truss is statically indeterminate to the first degree.
c) By inspection, the truss is internally and externally stable. Here, $b=12$, $r=3$ and $j=7$. Since $b+r>2 j$ and $(b+r)-2 j=15-14=1$, the truss is statically indeterminate to the first degree.

(b)

(c)
*3-4. Classify each of the following trusses as statically determinate, statically indeterminate, or unstable. If indeterminate, state its degree.

(a)

(b)

(c)

(d)

3-5. A sign is subjected to a wind loading that exerts horizontal forces of 300 lb on joints $B$ and $C$ of one of the side supporting trusses. Determine the force in each member of the truss and state if the members are in tension or compression.

Joint C: Fig $a$.

$$
\begin{aligned}
& + \\
& + \\
& + \\
& F_{x}=0 ; \quad 300-F_{C D}\left(\frac{5}{13}\right)=0 \quad F_{C D}=780 \mathrm{lb}(\mathrm{C}) \\
& +\uparrow \sum F_{y}=0 ; \quad 780\left(\frac{12}{13}\right)-F_{C B}=0 \quad F_{C B}=720 \mathrm{lb}(\mathrm{~T})
\end{aligned}
$$

Joint $\boldsymbol{D}$ : Fig. $b$.

$$
\begin{aligned}
& +\nearrow \sum F_{x}=0 ; \quad F_{D B}=0 \\
& +\pi \sum F_{y}=0 ; \quad F_{D E}-780=0 \quad F_{D E}=780 \mathrm{lb}(\mathrm{C})
\end{aligned}
$$

## Joint B: Fig. $c$.

$$
\begin{array}{ll}
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; & 300+F_{B E} \sin 45.24^{\circ}-F_{B A} \cos 45^{\circ}=0 \\
+\uparrow \sum F_{y}=0 ; & 720-F_{B E} \cos 45.24^{\circ}-F_{B A} \sin 45^{\circ}=0
\end{array}
$$

Solving

$$
F_{B E}=296.99 \mathrm{lb}=297 \mathrm{lb}(\mathrm{~T}) \quad F_{B A}=722.49 \mathrm{lb}(\mathrm{~T})=722 \mathrm{lb}(\mathrm{~T})
$$

## Ans.




3-6. Determine the force in each member of the truss. Indicate if the members are in tension or compression. Assume all members are pin connected.

Support Reactions. Referring to the FBD of the entire truss, Fig. $a$

$$
\begin{aligned}
& C+\sum M_{D}=0 ; \quad 2(8)+2(16)-A_{y}(24)=0 \quad A_{y}=2.0 \mathrm{k} \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0
\end{aligned}
$$

## Method of Joint.

Joint A: Fig. $b$,


$$
\begin{array}{lll}
+\uparrow \sum F_{y}=0 ; & 2.0-F_{A H}\left(\frac{1}{\sqrt{5}}\right)=0 & F_{A H}=4.472 \mathrm{k}(\mathrm{C})=4.47 \mathrm{k}(\mathrm{C}) \\
\xrightarrow{+} \sum F_{x}=0 ; & F_{A B}-4.472\left(\frac{2}{\sqrt{5}}\right)=0 & F_{A B}=4.00 \mathrm{k}(\mathrm{~T})
\end{array}
$$

Ans.

Ans.
Joint B: Fig. $c$,

$$
\begin{aligned}
& \xrightarrow{+} \sum F_{x}=0 ; \quad F_{B C}-4.00=0 \quad F_{B C}=4.00 \mathrm{k}(\mathrm{~T}) \\
& +\uparrow \sum F_{y}=0 ; \quad F_{B H}=0
\end{aligned}
$$

Ans.

Ans.

Ans.

Ans.

Joint F: Fig.e,

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; \quad F_{F G}=0 \\
& +\uparrow \sum F_{y}=0 ; \quad F_{F E}-1.5=0 \quad F_{F E}=1.5 \mathrm{k}(\mathrm{C})
\end{aligned}
$$

Ans.

Ans.
Joint G: Fig. f,

$$
\begin{aligned}
& +\sum F_{x}=0 ; \quad 2.236\left(\frac{2}{\sqrt{5}}\right)-F_{G E}=\left(\frac{2}{\sqrt{5}}\right)=0 \quad F_{G E}=2.236 \mathrm{k}(\mathrm{C})=2.24 \mathrm{k}(\mathrm{C}) \\
& +\uparrow \sum F_{y}=0 ; \quad 2.236\left(\frac{1}{\sqrt{5}}\right)+2.236\left(\frac{1}{\sqrt{5}}\right)-2-F_{G C}=0 \quad F_{G C}=0
\end{aligned}
$$

Joint E: Fig. $g$,

$$
\begin{aligned}
& \xrightarrow{+} \sum F_{x}=0 ; \quad 2.236\left(\frac{2}{\sqrt{5}}\right)-F_{E C}\left(\frac{2}{\sqrt{5}}\right)=0 \quad F_{E C}=2.236 \mathrm{k}(\mathrm{~T})=2.24 \mathrm{k}(\mathrm{~T}) \\
& +\uparrow \sum F_{y}=0 ; \quad F_{E D}=2.236\left(\frac{1}{\sqrt{5}}\right)-2.236\left(\frac{1}{\sqrt{5}}\right)-1.5=0 \quad F_{E D}=3.5 \mathrm{k}(\mathrm{C})
\end{aligned}
$$

Ans.

Ans.

Joint D: Fig. $h$,

$$
\xrightarrow{ \pm} \sum F_{x}=0 ; \quad F_{D C}=0
$$

Ans. exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3-6. Continued


3-7. Determine the force in each member of the truss. State whether the members are in tension or compression. Set $P=8 \mathrm{kN}$.

Method of Joints: In this case, the support reactions are not required for determining the member forces.

## Joint $D$ :

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad F_{D C} \sin 60^{\circ}-8=0 \\
F_{D C}=9.238 \mathrm{kN}(\mathrm{~T})=9.24 \mathrm{kN}(\mathrm{~T}) \\
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{D E}-9.238 \cos 60^{\circ}=0 \\
\\
F_{D E}=4.619 \mathrm{kN}(\mathrm{C})=4.62 \mathrm{kN}(\mathrm{C})
\end{gathered}
$$

Ans.

Ans.

Joint $C$ :

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad F_{C E} \sin 60^{\circ}-9.328 \sin 60^{\circ}=0 \\
F_{C E}=9.238 \mathrm{kN}(\mathrm{C})=9.24 \mathrm{kN}(\mathrm{C}) \\
\xrightarrow[\rightarrow]{ } \sum F_{x}=0 ; \quad 2\left(9.238 \cos 60^{\circ}\right)-F_{C B}=0 \\
F_{C B}=9.238 \mathrm{kN}(\mathrm{~T})=9.24 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

Ans.


Ans.

Ans.

Joint $B$ :

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad F_{B E} \sin 60^{\circ}-F_{B A} \sin 60^{\circ}=0 \\
F_{B E}=F_{B A}=F \\
+ \\
+\sum F_{x}=0 ; \quad 9.238-2 F \cos 60^{\circ}=0 \\
F=9.238 \mathrm{kN}
\end{gathered}
$$

Thus, $\quad F_{B E}=9.24 \mathrm{kN}(\mathrm{C}) \quad F_{B A}=9.24 \mathrm{kN}(\mathrm{T})$
Ans.


Joint $E$ :

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & E_{y}-2\left(9.238 \sin 60^{\circ}\right)=0 \quad E_{y}=16.0 \mathrm{kN} \\
\xrightarrow{+} \sum F_{x}=0 ; & F_{B A}+9.238 \cos 60^{\circ}-9.238 \cos 60^{\circ}-4.619=0 \\
& F_{E A}=4.62 \mathrm{kN}(\mathrm{C})
\end{array}
$$

Ans.

Note: The support reactions $A_{x}$ and $A_{y}$ can be determined by analyzing Joint $A$ using the results obtained above.
*3-8. If the maximum force that any member can support is 8 kN in tension and 6 kN in compression, determine the maximum force $P$ that can be supported at joint $D$.


Method of Joints: In this case, the support reactions are not required for determining the member forces.

## Joint $D$ :

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad F_{D C} \sin 60^{\circ}-P=0 \quad F_{D C}=1.1547 P(\mathrm{~T}) \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad F_{D E}-1.1547 P \cos 60^{\circ}=0 \quad F_{D E}=0.57735 P(\mathrm{C})
\end{aligned}
$$

## Joint $C$ :

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad F_{C E} \sin 60^{\circ}-1.1547 P \sin 60^{\circ}=0 \\
F_{C E}=1.1547 P(\mathrm{C})
\end{gathered}
$$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad 2\left(1.1547 P \cos 60^{\circ}-F_{C B}=0 \quad F_{C B}=1.1547 P \quad(\mathrm{~T})\right.
$$

Joint B:

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad F_{B E} \sin 60^{\circ}-F_{B E} \sin 60^{\circ}=0 \quad F_{B E}=F_{B A}=F \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad 1.1547 P-2 F \cos 60^{\circ}=0 \quad F=1.1547 P
\end{aligned}
$$

Thus,

$$
F_{B E}=1.1547 P(C) \quad F_{B A}=1.1547 P(\mathrm{~T})
$$

## Joint $E$ :

$$
\begin{gathered}
\xrightarrow[\rightarrow]{\longrightarrow} F_{x}=0 ; \quad F_{E A}+1.1547 P \cos 60^{\circ}-1.1547 P \cos 60^{\circ}-0.57735 P=0 \\
F_{E A}=0.57735 P(\mathrm{C})
\end{gathered}
$$

From the above analysis, the maximum compression and tension in the truss members is $1.1547 P$. For this case, compression controls which requires

$$
\begin{aligned}
& 1.1547 P=6 \\
& P=5.20 \mathrm{kN}
\end{aligned}
$$

Ans.


3-9. Determine the force in each member of the truss. State if the members are in tension or compression.

## Reactions:

$$
B_{y}=9.00 \mathrm{k}, \quad D_{x}=0, \quad D_{y}=1.00 \mathrm{k}
$$

## Joint A:

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad \frac{3}{5}\left(F_{A F}\right)-2=0 \\
& F_{A F}=3.333 \mathrm{k}=3.33 \mathrm{k}(\mathrm{~T}) \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad-F_{A B}+\frac{4}{5}(3.333)=0 \\
& F_{A B}=2.667 \mathrm{k}=2.67 \mathrm{k}(\mathrm{C})
\end{aligned}
$$

Ans.

Ans.


## Joint D:

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad-\frac{3}{5}\left(F_{D E}\right)+1=0 \\
F_{D E}=1.667 \mathrm{k}=1.67 \mathrm{k}(\mathrm{C}) \\
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; \quad \frac{4}{5}(1.667)-1.333=0 \quad(\text { Check })
\end{gathered}
$$



Ans.

Ans.

Ans.

Ans.

Ans.


Ans.


$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad-F_{C E}+\frac{3}{5}(5.00)=0 \\
F_{C E}=3.00 \mathrm{k}(\mathrm{C}) \\
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; \\
F_{C D}+(2.667)-\frac{4}{5}(5.00)=0 \\
F_{C D}=1.333 \mathrm{k}=1.33 \mathrm{k}(\mathrm{~T})
\end{gathered}
$$

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad-\frac{3}{5}\left(F_{F C}\right)-4-\frac{3}{5}(3.333)+9=0 \\
F_{F C}=5.00 \mathrm{k}(\mathrm{~T}) \\
\xrightarrow{+} \sum F_{x}=0 ; \quad \\
-F_{F E}-\frac{4}{5}(3.333)+\frac{4}{5}(5.00)=0 \\
\\
F_{F E}=1.333 \mathrm{k}=1.33 \mathrm{k}(\mathrm{C})
\end{gathered}
$$

Joint $C$ :


3-10. Determine the force in each member of the truss. State if the members are in tension or comprehension.

## Reactions:

$$
A_{y}=1.65 \mathrm{k}, \quad E_{x}=2.00 \mathrm{k}, \quad E_{y}=4.35 \mathrm{k}
$$

## Joint $E$ :

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad-\left(F_{E F}\right) \sin 21.80^{\circ}+4.35=0 \\
F_{E F}=11.71 \mathrm{k}=11.7 \mathrm{k}(\mathrm{C}) \\
\xrightarrow{+} \sum F_{x}=0 ; \quad-F_{E D}-2+11.71 \cos 21.80^{\circ}=0 \\
F_{E D}=8.875 \mathrm{k}(\mathrm{~T})
\end{gathered}
$$

## Joint $\boldsymbol{D}$ :

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad F_{D F}=0 \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad-F_{D C}+8.875=0 \\
& F_{D C}=8.875 \mathrm{k}(\mathrm{~T})
\end{aligned}
$$

## Joint A:

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad-F_{A H} \sin 50.19^{\circ}+1.65=0 \\
F_{A H}=2.148 k=2.15 \mathrm{k}(\mathrm{C}) \\
\xrightarrow[\longrightarrow]{+} F_{x}=0 ; \quad F_{A B}-2.148\left(\cos 50.19^{\circ}\right)=0 \\
F_{A B}=1.375 \mathrm{k}(\mathrm{~T})
\end{gathered}
$$

## Joint B:

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & F_{B H}=0 \\
\xrightarrow{+} \sum F_{x}=0 ; & F_{B C}-1.375=0 \\
& F_{B C}=1.375 \mathrm{k}(\mathrm{~T})
\end{array}
$$

## Joint $F$ :

$$
\begin{array}{ll}
+\nearrow \sum F_{y}=0 ; & F_{F C} \cos 46.40^{\circ}-3 \cos 21.80^{\circ}=0 \\
& F_{F C}=4.039 \mathrm{k}=4.04 \mathrm{k}(\mathrm{C}) \\
+\searrow \sum F_{x}=0 ; & F_{F G}+3 \sin 21.80^{\circ}+4.039 \sin 46.40^{\circ}-11.71=0 \\
& F_{F G}=7.671 \mathrm{k}=7.67 \mathrm{k}(\mathrm{C})
\end{array}
$$

Joint $G$ :

$$
\begin{array}{cl}
+\nearrow \sum F_{y}=0 ; & F_{G C} \cos 21.80^{\circ}-3 \cos 21.80^{\circ}=0 \quad F_{G C}=3.00 \mathrm{k}(\mathrm{C}) \\
+\searrow \sum F_{x}=0 ; & F_{G H}+3 \sin 21.80^{\circ}-3 \sin 21.80^{\circ}-7.671=0 ; \\
& F_{G H}=7.671 \mathrm{k}=7.67 \mathrm{k}(\mathrm{C})
\end{array}
$$

## Joint $C$ :

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad F_{C H} \sin 50.19^{\circ}-3.00-4.039 \sin 21.80^{\circ}=0 \\
F_{C H}=5.858 \mathrm{k}=5.86 \mathrm{k}(\mathrm{~T})
\end{gathered}
$$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad-4.039 \cos 21.80^{\circ}-5.858 \cos 51.9^{\circ}-1.375+8.875=0 \quad(\text { Check })
$$



Ans.

Ans.

Ans.


Ans.


Ans.

Ans.


Ans.


Ans.


Ans.

Ans.


Ans.

Ans.


Ans.


3-11. Determine the force in each member of the truss. State if the members are in tension or compression. Assume all members are pin connected.


Joint $\boldsymbol{D}$ :

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad F_{E D}\left(\frac{3}{5}\right)-5=0 ; \quad F_{E D}=8.33 \mathrm{kN}(\mathrm{~T}) \\
\stackrel{+}{\longrightarrow} \sum F_{x}=0 ; \quad F_{C D}-\frac{4}{5}(8.33)=0 ; \\
F_{C D}=6.67 \mathrm{kN}(\mathrm{C})
\end{gathered}
$$

Joint $C$ :

$$
\begin{gathered}
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; \quad F_{B C}-6.67=0 ; \\
+\uparrow \sum F_{y}=0 ; \quad F_{B C}=6.67 \mathrm{kN}(\mathrm{C}) \\
\\
\\
F_{C E}-5=0 ; \\
\\
\\
\end{gathered}
$$

Joint $\boldsymbol{G}$ :

$$
\begin{array}{lll}
\xrightarrow{+} \sum F_{x}=0 ; & F_{G F}-20=0 ; & F_{G F}=20 \mathrm{kN}(\mathrm{~T}) \\
+\uparrow \sum F_{y}=0 ; & 15-F_{G A}=0 ; & F_{G A}=15 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

## Joint A:

$$
\begin{array}{cc}
+\uparrow \sum F_{y}=0 ; & 15-F_{A F}\left(\sin 56.3^{\circ}\right)=0 \\
& F_{A F}=18.0 \mathrm{kN}(\mathrm{C}) \\
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; \quad-F_{A B}-18.0\left(\cos 56.3^{\circ}\right)+20=0 ; \\
& F_{A B}=10.0 \mathrm{kN}(\mathrm{C})
\end{array}
$$

## Joint B:

$$
\begin{gathered}
\xrightarrow{+} \sum F_{x}=0 ; \quad-F_{B E}\left(\frac{4}{5}\right)+10.0-6.67=0 ; \\
F_{B E}=4.17 \mathrm{kN}(\mathrm{C}) \\
+\uparrow \sum F_{y}=0 ; \quad F_{F B}-5-4.17\left(\frac{3}{5}\right)=0 ; \\
F_{F B}=7.50 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

Joint $\boldsymbol{F}$ :

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad 18\left(\sin 56.3^{\circ}\right)-7.5-F_{F E}\left(\frac{3}{5}\right)=0 \\
F_{F E}=12.5 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

## Ans.

Ans.
s.


JOINT C
Ans.

Ans.


Ans.
Joint $G$


JoInt A


JoINT $B$


JoInt F

*3-12. Determine the force in each member of the truss. State if the members are in tension or compression. Assume all members are pin connected. $A G=G F=F E=E D$.

## Reactions:

$$
A_{x}=0, \quad A_{y}=16.0 \mathrm{kN}
$$

## Joint A:

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & 16-4-F_{A G} \sin 26.565^{\circ}=0 \\
& F_{A G}=26.83 \mathrm{kN}=26.8 \mathrm{kN}(\mathrm{C}) \\
\xrightarrow{+} \sum F_{x}=0 ; & -26.83 \cos 26.565^{\circ}+F_{A B}=0 \\
& F_{A B}=24.0 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

## Joint $G$ :

$$
\begin{array}{ll}
+\nwarrow \sum F_{y}=0 ; & -8 \cos 26.565^{\circ}+F_{G B}=0 \\
& F_{G B}=7.155 \mathrm{kN}=7.16 \mathrm{kN}(\mathrm{C}) \\
+\nearrow \sum F_{x}=0 ; & 26.83-F_{G F}-8 \sin 26.56^{\circ}=0 \\
& F_{G F}=23.36 \mathrm{kN}=23.3 \mathrm{kN}(\mathrm{C})
\end{array}
$$

Joint $B$ :

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & F_{B F} \sin 53.13^{\circ}-7.155 \sin 63.43^{\circ}=0 \\
& F_{B F}=8.00 \mathrm{kN}(\mathrm{~T}) \\
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; & F_{B C}-24.0+7.155 \cos 63.43^{\circ}+8.00 \cos 53.13^{\circ}=0 \\
& F_{B C}=16.0 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

Due to symmetrical loading and geometry:

$$
\begin{aligned}
F_{C D} & =F_{A B}=24.0 \mathrm{kN}(\mathrm{~T}) \\
F_{E F} & =F_{G F}=23.3 \mathrm{kN}(\mathrm{C}) \\
F_{D E} & =F_{A G}=26.8 \mathrm{kN}(\mathrm{C}) \\
F_{E C} & =F_{G B}=7.16 \mathrm{kN}(\mathrm{C}) \\
F_{C F} & =F_{B F}=8.00 \mathrm{kN}(\mathrm{~T})
\end{aligned}
$$



Ans.

Ans.


Ans.

Ans.


Ans.

Ans.
Ans.
Ans.
Ans.


Ans.

3-13. Determine the force in each member of the truss and state if the members are in tension or compression.

## Support Reactions:

$$
\begin{aligned}
& \mathrm{C}+\sum M_{D}=0 ; \quad 4(6)+5(9)-E_{y}(3)=0 \quad E_{y}=23.0 \mathrm{kN} \\
& +\uparrow \sum F_{y}=0 ; \quad 23.0-4-5-D_{y}=0 \quad D_{y}=14.0 \mathrm{kN} \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad D_{x}=0
\end{aligned}
$$

## Method of Joints:

## Joint D:

$$
\begin{array}{cc}
+\uparrow \sum F_{y}=0 ; & F_{D E}\left(\frac{5}{\sqrt{34}}\right)-14.0=0 \\
& F_{D E}=16.33 \mathrm{kN}(\mathrm{C})=16.3 \mathrm{kN}(\mathrm{C}) \\
\xrightarrow{+} \sum F_{x}=0 ; & 16.33\left(\frac{3}{\sqrt{34}}\right)-F_{D C}=0 \\
& F_{D C}=8.40 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

Joint $E$ :

$$
\begin{gathered}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; \quad F_{E A}\left(\frac{3}{\sqrt{10}}\right)-16.33\left(\frac{3}{\sqrt{34}}\right)=0 \\
F_{E A}=8.854 \mathrm{kN}(\mathrm{C})=8.85 \mathrm{kN}(\mathrm{C}) \\
+\uparrow \sum F_{y}=0 ; \quad 23.0-16.33\left(\frac{5}{\sqrt{34}}\right)-8.854\left(\frac{1}{\sqrt{10}}\right)-F_{E C}=0 \\
F_{E C}=6.20 \mathrm{kN}(\mathrm{C})
\end{gathered}
$$

## Joint $C$ :

$$
\begin{array}{lc}
+\uparrow \sum F_{y}=0 ; & 6.20-F_{C F} \sin 45^{\circ}=0 \\
& F_{C F}=8.768 \mathrm{kN}(\mathrm{~T})=8.77 \mathrm{kN}(\mathrm{~T}) \\
\stackrel{+}{+} \sum F_{x}=0 ; & 8.40-8.768 \cos 45^{\circ}-F_{C B}=0 \\
& F_{C B}=2.20 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

## Joint $B$ :

$$
\begin{array}{ll}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; & 2.20-F_{B A} \cos 45^{\circ}=0 \\
& F_{B A}=3.111 \mathrm{kN}(\mathrm{~T})=3.11 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

$$
+\uparrow \sum F_{y}=0 ; \quad F_{B F}-4-3.111 \sin 45^{\circ}=0
$$

$$
F_{B F}=6.20 \mathrm{kN}(\mathrm{C})
$$

Joint $\boldsymbol{F}$ :

$$
\begin{array}{cc}
+\uparrow \sum F_{y}=0 ; & 8.768 \sin 45^{\circ}-6.20=0(\text { Check!) } \\
\xrightarrow{+} \sum F_{x}=0 ; & 8.768 \cos 45^{\circ}-F_{F A}=0 \\
F_{F A}=6.20 \mathrm{kN}(\mathrm{~T})
\end{array}
$$


Ans.
Ans.


Ans.

Ans.


Ans.

Ans.


Ans.


Ans.

3-14. Determine the force in each member of the roof truss. State if the members are in tension or compression.

## Reactions:

$$
A_{y}=16.0 \mathrm{kN}, \quad A_{x}=0, \quad F_{y}=16.0 \mathrm{kN}
$$

## Joint $\boldsymbol{A}$ :

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & -F_{A K} \sin 16.26^{\circ}-4+16=0 \\
& F_{A K}=42.86 \mathrm{kN}=42.9 \mathrm{kN}(\mathrm{C}) \\
\xrightarrow{+} \sum F_{x}=0 ; & F_{A B}-42.86 \cos 16.26^{\circ}=0 \\
& F_{A B}=41.14 \mathrm{kN}=41.1 \mathrm{kN}(\mathrm{~T})
\end{array}
$$



Ans.

Ans.

## Joint $K$ :

$$
\begin{array}{ll}
+\pi \sum F_{y}=0 ; & -4 \cos 16.26^{\circ}+F_{K B} \cos 16.26^{\circ}=0 \\
& F_{K B}=4.00 \mathrm{kN}(\mathrm{C}) \quad \quad \text { Ans. } \\
+\nearrow \sum F_{x}=0 ; & 42.86+4.00 \sin 16.26^{\circ}-4.00 \sin 16.26^{\circ}-F_{K J}=0 \\
& F_{K J}=42.86 \mathrm{kN}=42.9 \mathrm{kN}(\mathrm{C})
\end{array}
$$

Joint B:

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & F_{B J} \sin 30.26^{\circ}-4=0 \\
& F_{B J}=7.938 \mathrm{kN}=7.94 \mathrm{kN}(\mathrm{~T}) \\
\xrightarrow{+} \sum F_{x}=0 ; & F_{B C}+7.938 \cos 30.26^{\circ}-41.14=0 \\
& F_{B C}=34.29 \mathrm{kN}=34.3 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

## Joint $J$ :

$$
\begin{gathered}
\xrightarrow[\rightarrow]{>} F_{x}=0 ; \quad-F_{J I} \cos 16.26^{\circ}-7.939 \sin 59.74^{\circ}+42.86 \cos 16.26^{\circ}=0 \\
F_{J I}=35.71 \mathrm{kN}=35.7 \mathrm{kN}(\mathrm{C}) \quad \text { Ans. } \\
+\uparrow \sum F_{y}=0 ; \quad F_{J C}+42.86 \sin 16.26^{\circ}-7.939 \cos 59.74^{\circ}-4-35.71 \sin 16.26^{\circ}=0 \\
F_{J C}=6.00 \mathrm{kN}(\mathrm{C}) \quad \text { Ans. }
\end{gathered}
$$

Ans.


Ans.
Ans.


Joint $C$ :

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & F_{C I} \sin 41.19^{\circ}-6.00=0 \\
& F_{C I}=9.111 \mathrm{kN}=9.11 \mathrm{kN}(\mathrm{~T}) \\
\xrightarrow{+} \sum F_{x}=0 ; & F_{C D}+9.111 \cos 41.19^{\circ}-34.29=0 \\
& F_{C D}=27.4 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

Due to symmetrical loading and geometry

$$
\begin{aligned}
F_{I H} & =35.7 \mathrm{kN}(\mathrm{C}) \\
F_{H D} & =6.00 \mathrm{kN}(\mathrm{C}) \\
F_{H E} & =7.94 \mathrm{kN}(\mathrm{~T}) \\
F_{H G} & =42.9 \mathrm{kN}(\mathrm{C}) \\
F_{E D} & =34.3 \mathrm{kN}(\mathrm{~T}) \\
F_{I D} & =9.11 \mathrm{kN}(\mathrm{~T}) \\
F_{F G} & =42.9 \mathrm{kN}(\mathrm{C}) \\
F_{G E} & =4.00 \mathrm{kN}(\mathrm{C}) \\
F_{F E} & =41.1 \mathrm{kN}(\mathrm{~T})
\end{aligned}
$$



Ans.
Ans.
Ans.
Ans.
Ans.
Ans.


Ans.

Ans.

3-15. Determine the force in each member of the roof truss. State if the members are in tension or compression. Assume all members are pin connected.

## Joint A:

$$
\begin{gathered}
\sum F_{y}=0 ; \quad-\frac{3}{5} F_{A H}+15 \mathrm{kN}=0 \\
F_{A H}=25 \mathrm{kN}(\mathrm{C}) \\
\sum F_{x}=0 ; \quad-\frac{4}{5}(25 \mathrm{kN})+F_{A B}=0 \\
F_{A B}=20 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

Joint $B$ :

$$
\begin{array}{ll}
\sum F_{x}=0 ; & F_{B C}=20 \mathrm{kN}(\mathrm{~T}) \\
\sum F_{y}=0 ; & F_{B H}=10 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

## Joint H:

$$
\begin{gathered}
\sum F_{y}=0 ; \quad \frac{3}{5}(25 \mathrm{kN})-10 \mathrm{kN}+\frac{3}{5} F_{H C}-\frac{3}{5} F_{H G}=0 \\
\sum F_{x}=0 ; \quad \frac{4}{5}(25 \mathrm{kN})-\frac{4}{5} F_{H C}-\frac{4}{5} F_{H G}=0 \\
F_{H G}=16.7 \mathrm{kN}(\mathrm{C}) \\
F_{H C}=8.33 \mathrm{kN}(\mathrm{C})
\end{gathered}
$$

## Joint $\boldsymbol{G}$ :

$$
\begin{array}{cl}
\sum F_{x}=0 ; & \frac{4}{5}(16.67 \mathrm{kN})-\frac{4}{5} F_{G F}=0 \\
F_{G F}=16.7 \mathrm{kN}(\mathrm{C}) \\
\sum F_{x}=0 ; & \frac{3}{5}(16.67 \mathrm{kN})+\frac{3}{5}(16.67 \mathrm{kN})-F_{G C}=0 \\
F_{G C}=20 \mathrm{kN}(\mathrm{C})
\end{array}
$$

The other members are determined from symmetry.


Joint A:

Ans.

Ans.

Ans.

## JoINT $B$ :

Ans.

Ans.
Ans.

## Joint H



Ans.



Ans.

*3-16. Determine the force in each member of the truss. State if the members are in tension or compression.

## Joint $E$ :

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & F_{E A}=F_{E C} \\
\stackrel{+}{\longrightarrow} \sum F_{x}=0 ; & 2.31-2 F_{E A} \sin 30^{\circ}=0 \\
& F_{E A}=2.31 \mathrm{kN}(\mathrm{C}) \\
& F_{E C}=2.31 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

Joint $\boldsymbol{A}$ :

$$
\begin{array}{ll}
\xrightarrow{+} \sum F_{x}=0 ; & 2.31-2.31 \sin 30^{\circ}-F_{A B} \cos 30^{\circ}+F_{A D} \cos 45^{\circ}=0 \\
+\uparrow \sum F_{y}=0 ; & 2-2.31 \cos 30^{\circ}+F_{A D} \sin 45^{\circ}-F_{A B} \sin 30^{\circ}=0 \\
& F_{A D}=2.24 \mathrm{kN}(\mathrm{~T}) \\
& F_{A B}=3.16 \mathrm{kN}(\mathrm{C})
\end{array}
$$

## Joint $B$ :

$$
\begin{array}{ll}
\xrightarrow[\rightarrow]{ } \sum F_{x}=0 ; & F_{B C}=3.16 \mathrm{kN}(\mathrm{C}) \\
+\uparrow \sum F_{y}=0 ; & 2(3.16) \sin 30^{\circ}-F_{B D}=0 \\
& F_{B D}=3.16 \mathrm{kN}(\mathrm{C})
\end{array}
$$

## Joint $\boldsymbol{D}$ :

$$
F_{D C}=2.24 \mathrm{kN}(\mathrm{~T})
$$



Ans.
Ans.

Ans.
Ans.


Ans.
Joint A


JoInt B


JoInt D


3-17. Determine the force in each member of the roof truss. State if the members are in tension or compression. Assume $B$ is a pin and $C$ is a roller support.

Support Reactions. Referring to the FBD of the entire truss, Fig. $a$, $\zeta+\sum M_{C}=0 ; \quad 2(4)-2(2)-N_{B}(2)=0 \quad N_{B}=2.00 \mathrm{kN}$

## Method of joint.



Joint A: Fig. $b$,

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad F_{A G} \sin 30^{\circ}-2=0 \quad F_{A G}=4.00 \mathrm{kN}(\mathrm{~T}) \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad 4.00 \cos 30^{\circ}-F_{A B}=0 \quad F_{A B}=3.464 \mathrm{kN}(\mathrm{C})=3.46 \mathrm{kN}(\mathrm{C})
\end{aligned}
$$

Ans.
Ans.
Joint G: Fig. c,

$$
\begin{aligned}
& +\nearrow \sum F_{x}=0 ; \quad F_{G F}-4.00=0 \quad F_{G F}=4.00 \mathrm{kN}(\mathrm{~T}) \\
& +\nwarrow \sum F_{y}=0 ; \quad F_{G B}=0
\end{aligned}
$$

Ans.
Ans.
Joint B: Fig. $d$,

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad 2-F_{B F} \sin 60^{\circ}=0 \quad F_{B F}=2.309 \mathrm{kN}(\mathrm{C})=2.31 \mathrm{kN}(\mathrm{C}) \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad 3.464-2.309 \cos 60^{\circ}-F_{B C}=0 \quad F_{B C}=2.309 \mathrm{kN}(\mathrm{C})-2.31 \mathrm{kN}(\mathrm{C})
\end{aligned}
$$

Ans.
Ans.
Due to symmetry,

$$
\begin{array}{lll}
F_{D E}=F_{A G}=4.00 \mathrm{kN}(\mathrm{~T}) & F_{D C}=F_{A B}=3.46 \mathrm{kN}(\mathrm{C}) & \text { Ans. } \\
F_{E F}=F_{G F}=4.00 \mathrm{kN}(\mathrm{~T}) & F_{E C}=F_{G B}=0 & \text { Ans. } \\
F_{C F}=F_{B F}=2.31 \mathrm{kN}(\mathrm{C}) & &
\end{array}
$$


(a)

(C)

(b)

(d)

3-18. Determine the force in members $G F, F C$, and $C D$ of the bridge truss. State if the members are in tension of compression. Assume all members are pin connected.

$$
\begin{array}{cl}
\varsigma+\sum M_{F}=0 ; \quad & -F_{D C}(30)+8.75(40)=0 \\
& F_{D C}=11.7 \mathrm{k}(\mathrm{~T}) \\
\varsigma+\sum M_{C}=0 ; \quad & -F_{F C}\left(\frac{8}{\sqrt{73}}\right)(45)+8.75(80)=0 \\
& F_{F G}=16.6 \mathrm{k}(\mathrm{C}) \\
+\uparrow \sum F_{y}=0 ; & 8.75-16.6\left(\frac{3}{\sqrt{73}}\right) \cdot F_{F C}\left(\frac{3}{5}\right)=0 \\
& F_{F C}=4.86 \mathrm{k}(\mathrm{~T})
\end{array}
$$



Ans.

Ans.

Ans.


3-19. Determine the force in members $J K, J N$, and $C D$. State if the members are in tension of compression. Identify all the zero-force members.


Ans.


Ans.
Ans.
Ans.

$$
F_{J K}=4.03 \mathrm{k}(\mathrm{C})
$$

Members $K N, N L, M B, B L, C L, I O, O H, G E, E H, H D$ are zero force members.
*3-20. Determine the force in members $G F, F C$, and $C D$ of the cantilever truss. State if the members are in tension of compression. Assume all members are pin connected.

$$
\begin{aligned}
C+\sum M_{C}=0 ; \quad & 12 \mathrm{kN}\left(\cos 26.57^{\circ}\right)(4 \mathrm{~m})+12 \mathrm{kN}\left(\cos 26.57^{\circ}\right)(2 \mathrm{~m}) \\
& -12 \mathrm{kN}\left(\sin 26.57^{\circ}\right)(1 \mathrm{~m})-F_{G F} \sin 26.57^{\circ}(4 \mathrm{~m})=0
\end{aligned}
$$

$$
F_{G F}=33.0 \mathrm{kN}(\mathrm{~T})
$$

Ans.

$$
\zeta+\sum M_{A}=0 ; \quad-12 \mathrm{kN}(2.236 \mathrm{~m})+F_{F C}(4 \mathrm{~m})=0
$$

$$
F_{F C}=6.71 \mathrm{kN}(\mathrm{~T})
$$

Ans.
$\varsigma+\sum M_{F}=0 ; \quad 12 \mathrm{kN}(2.236 \mathrm{~m})+12 \mathrm{kN}(2)(2.236 \mathrm{~m})-F_{C D}(2 \mathrm{~m})=0$

$$
F_{C D}=40.2 \mathrm{kN}(\mathrm{C})
$$



3-21. The Howe truss is subjected to the loading shown. Determine the forces in members $G F, C D$, and GC. State if the members are in tension or compression. Assume all members are pin connected.


Ans.

Ans.

Ans.


3-22. Determine the force in members $B G, H G$, and $B C$ of the truss and state if the members are in tension or compression.

$\varsigma+\sum M_{E}=0 ; \quad 6(9)+7(6)+4(3)-A_{y}(12)=0 \quad A_{y}=9.00 \mathrm{kN}$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0
$$

## Method of Sections:

$$
\begin{gathered}
\zeta+\sum M_{G}=0 ; \quad F_{B C}(4.5)+6(3)-9(6)=0 \\
F_{B C}=8.00 \mathrm{kN}(\mathrm{~T}) \\
\varsigma+\sum M_{B}=0 ; \quad F_{H G}\left(\frac{1}{\sqrt{5}}\right)(6)-9(3)=0 \\
F_{H G}=10.1 \mathrm{kN}(\mathrm{C}) \\
\varsigma+\sum M_{O}=0 ; \quad F_{B G}\left(\frac{1.5}{\sqrt{3.25}}\right)(6)+9(3)-6(6)=0 \\
F_{B G}=1.80 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

Ans.

Ans.

Ans.


Ans.
 compression.

## Method of Sections:

3-23. Determine the force in members $G F, C F$, and $C D$ of the roof truss and indicate if the members are in tension or

$$
\varsigma+\sum M_{A}=0 ; \quad E_{y}(4)-2(0.8)-1.5(2.50)=0 \quad E_{y}=1.3375 \mathrm{kN}
$$

$$
\begin{array}{ll}
C+\sum M_{C}=0 ; & 1.3375(2)-F_{G F}(1.5)=0 \\
& F_{G F}=1.78 \mathrm{kN}(\mathrm{~T}) \\
C+\sum M_{F}=0 ; & 1.3375(1)-F_{C D}\left(\frac{3}{5}\right)(1)=0 \\
& F_{C D}=2.23 \mathrm{kN}(\mathrm{C}) \\
C+\sum M_{E}=0 & F_{C F}\left(\frac{1.5}{\sqrt{3.25}}\right)(1)=0 \quad F_{C F}=0
\end{array}
$$

Ans.


Ans.
Ans.


*3-24. Determine the force in members $G F, F B$, and $B C$ of the Fink truss and state if the members are in tension or compression.


Support Reactions: Due to symmetry. $D_{y}=A_{y}$.

$$
+\uparrow \sum F_{y}=0 ; \quad 2 A_{y}-800-600-800=0 \quad A_{y}=1100 \mathrm{lb}
$$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0
$$

## Method of Sections:

$\varsigma+\sum M_{B}=0 ; \quad F_{G F} \sin 30^{\circ}(10)+800\left(10-10 \cos ^{2} 30^{\circ}\right)-1100(10)=0$
$F_{G F}=1800 \mathrm{lb}(\mathrm{C})=1.80 \mathrm{k}(\mathrm{C})$
Ans.

$$
\begin{aligned}
\mathrm{C}+\sum M_{A}=0 ; & F_{F B} \sin 60^{\circ}(10)-800\left(10 \cos ^{2} 30^{\circ}\right)=0 \\
& F_{F B}=692.82 \mathrm{lb}(\mathrm{~T})=693 \mathrm{lb}(\mathrm{~T}) \\
\mathrm{C}+\sum M_{F}=0 ; & F_{B C}\left(15 \tan 30^{\circ}\right)+800\left(15-10 \cos ^{2} 30^{\circ}\right)-1100(15)=0 \\
& F_{B C}=1212.43 \mathrm{lb}(\mathrm{~T})=1.21 \mathrm{k}(\mathrm{~T})
\end{aligned}
$$



3-25. Determine the force in members $I H, I D$, and $C D$ of the truss. State if the members are in tension or compression. Assume all members are pin connected.


Referring to the FBD of the right segment of the truss sectioned through a-a, Fig. $a$,

$$
\begin{array}{ll}
\zeta+\sum M_{D}=0 ; & F_{I H}(2)-3(2)-1.5(4)=0 \\
& F_{I H}=6.00 \mathrm{kN}(\mathrm{~T}) \\
\varsigma+\sum M_{F}=0 ; & 3(2)+3(4)-F_{I D}\left(\frac{1}{\sqrt{2}}\right)(6)=0 \\
& F_{I D}=4.243 \mathrm{kN}(\mathrm{~T})=4.24 \mathrm{kN}(\mathrm{~T}) \\
\varsigma+\sum M_{I}=0 ; & F_{C D}\left(\frac{1}{\sqrt{5}}\right)(6)-3(2)-3(4)-1.5(6)=0 \\
& F_{C D}=10.06 \mathrm{kN}=10.1 \mathrm{kN}(\mathrm{C})
\end{array}
$$

Ans.


3-26. Determine the force in members $J I, I C$, and $C D$ of the truss. State if the members are in tension or compression. Assume all members are pin connected.


Consider the FBD of the right segment of the truss sectioned through a-a, Fig. $a$,

$$
\zeta+\sum M_{C}=0 ; \quad F_{J I}(3)-3(2)-3(4)-1.5(6)=0
$$

$$
\begin{gathered}
F_{J I}=9.00 \mathrm{kN}(\mathrm{~T}) \\
\varsigma+\sum M_{F}=0 ; \quad 3(6)+3(4)+3(2)-F_{I C}(6)=0 \\
F_{I C}=6.00 \mathrm{kN}(\mathrm{C}) \\
\varsigma+\sum M_{I}=0 ; \quad F_{C D}\left(\frac{1}{\sqrt{5}}\right)(6)-1.5(6)-3(4)-3(2)=0 \\
F_{C D}=10.06 \mathrm{kN}(\mathrm{C})=10.1 \mathrm{kN}(\mathrm{C})
\end{gathered}
$$

Ans.

(a)

3-27. Determine the forces in members $K J, C D$, and $C J$ of the truss. State if the members are in tension or compression.

## Entire truss:

$$
\begin{array}{cl}
\xrightarrow{+} \sum F_{x}=0 ; & A_{x}=0 \\
\varsigma+\sum M_{A}=0 ; & -15(3)-15(6)-30(9)-20(12)-10(15)-5(18)+G_{y}(18)=0 \\
& G_{y}=49.17 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; & A_{y}-5-15-15-30-20-10-5+49.167=0 \\
& A_{y}=50.83 \mathrm{kN}
\end{array}
$$

## Section:

$$
\begin{array}{ll}
\zeta+\sum M_{C}=0 ; & 15(3)+5(6)-50.83(6)+F_{K J}(2)=0 \\
& F_{K J}=115 \mathrm{kN}(\mathrm{C}) \\
C+\sum M_{A}=0 ; & -15(3)-15(6)+F_{C J} \sin 33.69^{\circ}(9)=0 \\
& F_{C J}=27.0 \mathrm{kN}(\mathrm{~T}) \\
C+\sum M_{J}=0 ; & -50.83(9)+5(9)+15(6)+15(3)+F_{C D} \cos 18.43^{\circ}(3)=0 \\
& F_{C D}=97.5 \mathrm{kN}(\mathrm{~T})
\end{array}
$$



Ans.
*3-28. Determine the forces in all the members of the complex truss. State if the members are in tension or compression. Hint: Substitute member $A D$ with one placed between $E$ and $C$.
$S_{i}=S^{\prime}{ }_{i}+\chi\left(S_{i}\right)$
$F_{E C}=S_{E C}^{\prime}+(x) S_{E C}=0$
$747.9+x(0.526)=0$
$x=1421.86$
Thus:

$$
\begin{aligned}
& \begin{array}{l}
F_{A F}=S_{A F}+(x) S_{A F} \\
\quad=1373.21+(1421.86)(-1.41) \\
\quad=-646.3 \mathrm{lb} \\
F_{A F}=646 \mathrm{lb}(\mathrm{C})
\end{array}
\end{aligned}
$$

In a similar manner:
$F_{A B}=580 \mathrm{lb}(\mathrm{C})$
$F_{E B}=820 \mathrm{lb}(\mathrm{T})$
$F_{B C}=580 \mathrm{lb}(\mathrm{C})$
$F_{E F}=473 \mathrm{lb}(\mathrm{C})$
$F_{C F}=580 \mathrm{lb}(\mathrm{T})$
$F_{C D}=1593 \mathrm{lb}(\mathrm{C})$
$F_{E D}=1166 \mathrm{lb}(\mathrm{C})$
$F_{D A}=1428 \mathrm{lb}(\mathrm{T})$


Ans.

Ans.
Ans.
Ans.
Ans.
Ans.
Ans.
Ans.
Ans.


3-29. Determine the forces in all the members of the lattice (complex) truss. State if the members are in tension or compression. Hint: Substitute member JE by one placed between $K$ and $F$.
$S_{i}=S^{\prime}{ }_{i}+X\left(S_{i}\right)$
$F_{K F}=1.5+1(x)=0 ; \quad x=-1.5$
Thus:
$F_{A B}=0$
$F_{A G}=1.50 \mathrm{k}(\mathrm{C})$
$F_{G B}=0.707 \mathrm{k}(\mathrm{T})$
$F_{G L}=0.500 \mathrm{k}(\mathrm{C})$
$F_{G I}=0.707 \mathrm{k}(\mathrm{C})$
$F_{L I}=0.707 \mathrm{k}(\mathrm{T})$
$F_{L K}=0.500 \mathrm{k}(\mathrm{C})$
$F_{I K}=0.707 \mathrm{k}(\mathrm{C})$
$F_{I F}=0.707 \mathrm{k}(\mathrm{T})$
$F_{B F}=2.12 \mathrm{k}(\mathrm{T})$
$F_{B C}=1.00 \mathrm{k}(\mathrm{C})$
$F_{F C}=0.707 \mathrm{k}(\mathrm{T})$
$F_{F H}=2.12 \mathrm{k}(\mathrm{T})$
$F_{K H}=0.707 \mathrm{k}(\mathrm{T})$
$F_{K J}=1.50 \mathrm{k}(\mathrm{C})$
$F_{J H}=2.12 \mathrm{k}(\mathrm{T})$
$F_{C D}=0$
$F_{D E}=0.500 \mathrm{k}(\mathrm{C})$
$F_{C E}=0.707 \mathrm{k}(\mathrm{C})$
$F_{H E}=0.707 \mathrm{k}(\mathrm{T})$
$F_{J E}=1.50 \mathrm{k}(\mathrm{C})$


Ans.


Qiforces
$+$


3-30. Determine the force in each member and state if the members are in tension or compression.

## Reactions:

$$
A_{x}=0, \quad A_{y}=4.00 \mathrm{kN}, \quad B_{y}=4.00 \mathrm{kN}
$$

## Joint A:

$$
\begin{array}{ll}
\xrightarrow[\rightarrow]{ } \sum F_{x}=0 ; & F_{A D}=0 \\
+\uparrow \sum F_{y}=0 ; & 4.00-F_{A F}=0 ; \quad F_{A F}=4.00 \mathrm{kN}(\mathrm{C})
\end{array}
$$

## Joint F:

$$
\begin{aligned}
\nwarrow+\sum F_{y}=0 ; & 4.00 \sin 45^{\circ}-F_{F D} \sin 18.43^{\circ}=0 \\
& F_{F D}=8.944 \mathrm{kN}=8.94 \mathrm{kN}(\mathrm{~T}) \\
+\nearrow \sum F_{x}=0 ; & 4.00 \cos 45^{\circ}+8.94 \cos 18.43^{\circ}-F_{F E}=0 \\
& F_{F E}=11.313 \mathrm{kN}=11.3 \mathrm{kN}(\mathrm{C})
\end{aligned}
$$

Due to symmetrical loading and geometry

$$
\begin{aligned}
& F_{B C}=4.00 \mathrm{kN}(\mathrm{C}) \quad F_{C E}=8.94 \mathrm{kN}(\mathrm{~T}) \\
& F_{B E}=0 \quad F_{C D}=11.3 \mathrm{kN}(\mathrm{C})
\end{aligned}
$$

## Joint $E$ :

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; \quad-F_{E D}+8.944 \cos 26.56^{\circ}+11.31 \cos 45^{\circ}=0 \\
& F_{E D}=16.0 \mathrm{kN}(\mathrm{C}) \\
& +\uparrow \sum F_{y}=0 ; \quad-4-8.944 \sin 26.56^{\circ}+11.31 \sin 45^{\circ}=0(\text { Check })
\end{aligned}
$$



Ans.
Ans.

Ans.

Ans.

Ans.
Ans.

Ans.


3-31. Determine the force in all the members of the complex truss. State if the members are in tension or compression.

The member forces $S_{i}{ }^{\prime}$ and $S_{i}$ for each member of the reduced simple truss can be determined using method of joints by referring to Fig. $a$ and $b$, respectively. Using the forces of the replacing member $D F$,

$$
\begin{aligned}
& S_{D F}=S_{D F}^{\prime}+X S_{D F} \\
& 0=-2+X(1.7320) \\
& x=1.1547
\end{aligned}
$$



| member | $S_{i}^{\prime}(\mathrm{kN})$ | $S_{i}(\mathrm{kN})$ | $X S_{i}(\mathrm{kN})$ | $S_{i}(\mathrm{kN})$ |
| :---: | :---: | :---: | :---: | :---: |
| $E F$ | 2.3094 | -1 | -1.1547 | $1.15(\mathrm{~T})$ |
| $E D$ | -2.3094 | -1 | -1.1547 | $3.46(\mathrm{C})$ |
| $B A$ | 0 | 1 | 1.1547 | $1.15(\mathrm{~T})$ |
| $B C$ | 0 | 1 | 1.1547 | $1.15(\mathrm{~T})$ |
| $A D$ | 5.6569 | -1.2247 | -1.4142 | $4.24(\mathrm{~T})$ |
| $A F$ | 1.1547 | 0.3660 | 0.4226 | $1.58(\mathrm{~T})$ |
| $C F$ | 0 | -1.2247 | -1.4142 | $1.41(\mathrm{C})$ |
| $C D$ | -5.1547 | 0.3660 | 0.4226 | $4.73(\mathrm{C})$ |
| $B E$ | 0 | 1 | 1.1547 | $1.15(\mathrm{~T})$ |


*3-32. Determine the force developed in each member of the space truss and state if the members are in tension or compression. The crate has a weight of 150 lb .

$$
\begin{aligned}
F_{C A} & =F_{C A}\left[\frac{-1 \mathbf{i}+2 \mathbf{j}+2 \sin 60^{\circ} \mathbf{k}}{\sqrt{8}}\right] \\
& =-0.354 F_{C A} \mathbf{i}+0.707 F_{C A} \mathbf{j}+0.612 F_{C A} \mathbf{k} \\
F_{C B} & =-0.354 F_{C B} \mathbf{i}+0.707 F_{C B} \mathbf{j}+0.612 F_{C B} \mathbf{k} \\
F_{C D} & =-F_{C D} \mathbf{j} \\
w & =-150 \mathbf{k}
\end{aligned}
$$

$$
\sum F_{x}=0 ; \quad-0.354 F_{C A}+0.354 F_{C B}=0
$$

$$
\sum F_{y}=0 ; \quad 0.707 F_{C A}+0.707 F_{C B}-F_{C D}=0
$$

$$
\sum F_{z}=0 ; \quad 0.612 F_{C A}+0.612 F_{C B}-150=0
$$

Solving:

$$
\begin{gathered}
F_{C A}=F_{C B}=122.5 \mathrm{lb}=122 \mathrm{lb}(\mathrm{C}) \\
F_{C D}=173 \mathrm{lb}(\mathrm{~T}) \\
\mathbf{F}_{B A}=F_{B A} \mathbf{i} \\
\mathbf{F}_{B D}=F_{B D} \cos 60^{\circ} \mathbf{i}+F_{B D} \sin 60^{\circ} \mathbf{k} \\
\mathbf{F}_{C B}=122.5(-0.354 \mathbf{i}-0.707 \mathbf{j}-0.612 \mathbf{k}) \\
=-43.3 \mathrm{i}-86.6 \mathrm{j}-75.0 \mathrm{k} \\
\sum F_{x}=0 ; \quad F_{B A}+F_{B D} \cos 60^{\circ}-43.3=0 \\
\sum F_{z}=0 ; \quad F_{B D} \sin 60^{\circ}-75=0
\end{gathered}
$$

Solving:

$$
\begin{gathered}
F_{B D}=86.6 \mathrm{lb}(\mathrm{~T}) \\
F_{B A}=0 \\
F_{A C}=122.5\left(0.354 F_{A C} \mathbf{i}-0.707 F_{A C} \mathbf{j}-0.612 F_{A C} \mathbf{k}\right) \\
\sum F_{z}=0 ; \quad F_{D A} \cos 30^{\circ}-0.612(122.5)=0 \\
F_{D A}=86.6 \mathrm{lb}(\mathrm{~T})
\end{gathered}
$$



Ans.
Ans.


Ans.
Ans.

Ans.


3-33. Determine the force in each member of the space truss and state if the members are in tension or compression. Hint: The support reaction at $E$ acts along member $E B$. Why?


Method of Joints: In this case, the support reactions are not required for determining the member forces.

## Joint $\boldsymbol{A}$ :

$$
\begin{array}{ll}
\sum F_{x}=0 ; & F_{A B}\left(\frac{5}{\sqrt{29}}\right)-6=0 \\
& F_{A B}=6.462 \mathrm{kN}(\mathrm{~T})=6.46 \mathrm{kN}(\mathrm{~T}) \\
\sum F_{z}=0 ; & F_{A C}\left(\frac{3}{5}\right)-F_{A D}\left(\frac{3}{5}\right)=0 \quad F_{A C}=F_{A D}  \tag{1}\\
\sum F_{y}=0 ; & F_{A C}\left(\frac{4}{5}\right)+F_{A D}\left(\frac{4}{5}\right)-6.462\left(\frac{2}{\sqrt{29}}\right)=0 \\
& F_{A C}+F_{A D}=3.00
\end{array}
$$

Ans.
[2]
Solving Eqs. [1] and [2] yields

$$
F_{A C}=F_{A D}=1.50 \mathrm{kN}(\mathrm{C})
$$

Joint $B$ :

$$
\begin{array}{ll}
\sum F_{x}=0 ; & F_{B C}\left(\frac{3}{\sqrt{38}}\right)-F_{B D}\left(\frac{3}{\sqrt{38}}\right)=0 \quad F_{B C}=F_{B D} \\
\sum F_{z}=0 ; & F_{B C}\left(\frac{5}{\sqrt{38}}\right)+F_{B D}\left(\frac{5}{\sqrt{38}}\right)-6.462\left(\frac{5}{\sqrt{29}}\right)=0 \\
& F_{B C}+F_{B D}=7.397 \tag{2}
\end{array}
$$

Solving Eqs. [1] and [2] yields
Ans.

$$
\begin{gathered}
F_{B C}=F_{B D}=3.699 \mathrm{kN}(\mathrm{C})=3.70 \mathrm{kN}(\mathrm{C}) \\
\sum F_{y}=0 ; \quad 2\left[3.699\left(\frac{2}{\sqrt{38}}\right)\right]+6.462\left(\frac{2}{\sqrt{29}}\right)-F_{B E}=0 \\
F_{B E}=4.80 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

Ans.

Ans.
Note: The support reactions at supports $C$ and $D$ can be determined by analyzing joints $C$ and $D$, respectively using the results oriented above.

3-34. Determine the force in each member of the space truss and state if the members are in tension or compression. The truss is supported by ball-and-socket joints at $C, D, E$, and $G$. Note: Although this truss is indeterminate to the first degree, a solution is possible due to symmetry of geometry and loading.

$$
\begin{array}{ll}
\sum\left(M_{E G}\right)_{x}=0 ; & \frac{2}{\sqrt{5}} F_{B C}(2)+\frac{2}{\sqrt{5}} F_{B D}(2)-\frac{4}{5}(3)(2)=0 \\
& F_{B C}+F_{B D}=2.683 \mathrm{kN} \\
\text { Due to symmetry: } & F_{B C}=F_{B D}=1.342=1.34 \mathrm{kN}(\mathrm{C})
\end{array}
$$

## Joint A:

$$
\begin{array}{ll}
\sum F_{z}=0 ; & F_{A B}-\frac{4}{5}(3)=0 \\
& F_{A B}=2.4 \mathrm{kN}(\mathrm{C}) \\
\sum F_{x}=0 ; & F_{A G}=F_{A E} \\
\sum F_{y}=0 ; & \frac{3}{5}(3)-\frac{3}{\sqrt{5}} F_{A E}-\frac{3}{\sqrt{5}} F_{A G}=0 \\
& F_{A G}=F_{A E}=1.01 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

Joint B:

$$
\begin{array}{ll}
\sum F_{x}=0 ; & \frac{1}{\sqrt{5}}(1.342)+\frac{1}{3} F_{B E}-\frac{1}{\sqrt{5}}(1.342)-\frac{1}{3} F_{B G}=0 \\
\sum F_{y}=0 ; & \frac{2}{\sqrt{5}}(1.342)-\frac{2}{3} F_{B E}+\frac{2}{\sqrt{5}}(1.342)-\frac{2}{3} F_{B G}=0 \\
\sum F_{z}=0 ; & \frac{2}{3} F_{B E}+\frac{2}{3} F_{B G}-2.4=0 \\
& F_{B G}=1.80 \mathrm{kN}(\mathrm{~T}) \\
& F_{B E}=1.80 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

Ans.

Ans.

Ans.


Ans.


Ans.


3-35. Determine the force in members $F E$ and $E D$ of the space truss and state if the members are in tension or compression. The truss is supported by a ball-and-socket joint at $C$ and short links at $A$ and $B$.

Joint $\boldsymbol{F}: F_{F G}, F_{F D}$, and $F_{F C}$ are lying in the same plane and $x^{\prime}$ axis is normal to that plane. Thus

$$
\sum F_{x^{\prime}}=0 ; \quad F_{F E} \cos \theta=0 ; \quad F_{F E}=0
$$

Ans.
Joint $\boldsymbol{E}$ : $F_{E G}, F_{B C}$, and $F_{E B}$ are lying in the same plane and $x$ 'axis is normal to that plane. Thus


$$
\sum F_{x^{\prime}}=0 ; \quad F_{E D} \cos \theta=0 ; \quad F_{E D}=0
$$

Ans.

*3-36. Determine the force in members $G D, G E$, and $F D$ of the space truss and state if the members are in tension or compression.

## Joint $G$ :

$$
\begin{aligned}
& F_{G D}=F_{G D}\left(-\frac{2}{12.53} \mathbf{i}+\frac{3}{12.53} \mathbf{j}+\frac{12}{12.53} \mathbf{k}\right) \\
& F_{G F}=F_{G F}\left(\frac{4}{13} \mathbf{i}-\frac{3}{13} \mathbf{j}+\frac{12}{13} \mathbf{k}\right) \\
& F_{G E}=F_{G E}\left(-\frac{2}{12.53} \mathbf{i}-\frac{3}{12.53} \mathbf{j}+\frac{12}{12.53} \mathbf{k}\right) \\
& \sum F_{x}=0 ; \quad-F_{G D}\left(\frac{2}{12.53}\right)+F_{G F}\left(\frac{4}{13}\right)-F_{G E}\left(\frac{2}{12.53}\right)=0 \\
& \sum F_{y}=0 ; \quad F_{G D}\left(\frac{3}{12.53}\right)+F_{G F}\left(\frac{3}{13}\right)-F_{G E}\left(\frac{3}{12.53}\right)+200=0 \\
& \sum F_{z}=0 ; \quad F_{G D}\left(\frac{12}{12.53}\right)+F_{G F}\left(\frac{12}{13}\right)-F_{G E}\left(\frac{12}{12.53}\right)-500=0
\end{aligned}
$$




## 3-36. Continued

Solving,

$$
\begin{aligned}
& F_{G D}=-157 \mathrm{lb}=157 \mathrm{lb}(\mathrm{~T}) \\
& F_{G F}=181 \mathrm{lb}(\mathrm{C}) \\
& F_{G E}=505 \mathrm{lb}(\mathrm{C})
\end{aligned}
$$

Ans.

Ans.


## Joint F:

Orient the $x^{\prime}, y^{\prime}, z^{\prime}$ axes as shown.

$$
\sum F_{y^{\prime}}=0 ; \quad F_{F D}=0
$$

Ans.

3-37. Determine the force in each member of the space truss. Indicate if the members are in tension or compression.

## Joint A:

$$
\begin{array}{ll}
\sum F_{x}=0 ; & 0.577 F_{A E}=0 \\
\sum F_{y}=0 ; & -4+F_{A B}+0.577 F_{A E}=0 \\
\sum F_{z}=0 ; & -F_{A C}-0.577 F_{A E}=0 \\
& F_{A C}=F_{A E}=0 \\
& F_{A B}=4 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

## Joint B:

$$
\begin{array}{ll}
\sum F_{x}=0 ; & -R_{B}\left(\cos 45^{\circ}\right)+0.707 \mathrm{~F}_{B E}=0 \\
\sum F_{y}=0 ; & -4+R_{B}\left(\sin 45^{\circ}\right)=0 \\
\sum F_{z}=0 ; & 2+F_{B D}-0.707 F_{B E}=0 \\
& R_{B}=F_{B E}=5.66 \mathrm{kN}(\mathrm{~T}) \\
& F_{B D}=2 \mathrm{kN}(\mathrm{C})
\end{array}
$$

## Joint $\boldsymbol{D}$ :

$$
\begin{array}{ll}
\sum F_{x}=0 ; & F_{D E}=0 \\
\sum F_{y}=0 ; & F_{D C}=0
\end{array}
$$

## Joint $C$ :

$$
\sum F_{x}=0 ; \quad F_{C E}=0
$$



Ans.
Ans.

$\tau$

Ans.
Ans.

Ans.
Ans.

Ans.



3-38. Determine the force in members $B E, D F$, and $B C$ of the space truss and state if the members are in tension or compression.


Method of Joints: In this case, the support reactions are not required for determining the member forces.

## Joint $C$ :

$$
\begin{array}{cc}
\sum F_{t}=0 ; & F_{C D} \sin 60^{\circ}-2=0 \quad F_{C D}=2.309 \mathrm{kN}(\mathrm{~T}) \\
\sum F_{x}=0 ; & 2.309 \cos 60^{\circ}-F_{B C}=0 \\
F_{B C}=1.154 \mathrm{kN}(\mathrm{C})=1.15 \mathrm{kN}(\mathrm{C})
\end{array}
$$

Ans.
Joint $\boldsymbol{D}$ : Since $F_{C D}, F_{D E}$ and $F_{D F}$ lie within the same plane and $F_{D E}$ is out of this plane, then $F_{D E}=0$.


$$
\begin{aligned}
\sum F_{x}=0 ; & F_{D F}\left(\frac{1}{\sqrt{13}}\right)-2.309 \cos 60^{\circ}=0 \\
& F_{D F}=4.16 \mathrm{kN}(\mathrm{C})
\end{aligned}
$$

Ans.
Joint $\boldsymbol{R}$ :

$$
\begin{aligned}
\sum F_{t}=0 ; & F_{B E}\left(\frac{1.732}{\sqrt{13}}\right)-2=0 \\
& F_{B E}=4.16 \mathrm{kN}(\mathrm{~T})
\end{aligned}
$$

Ans.


3-39. Determine the force in members $C D, E D$, and $C F$ of the space truss and state if the members are in tension or compression.


Method of Joints: In this case, the support reactions are not required for determining the member forces.

Joint $C$ : Since $F_{C D}, F_{B C}$ and 2 kN force lie within the same plane and $F_{C F}$ is out of this plane, then

$$
F_{C F}=0
$$

Ans.
$\sum F_{t}=0 ;$

$$
F_{C D} \sin 60^{\circ}-2=0
$$

$$
F_{C D}=2.309 \mathrm{kN}(\mathrm{~T})=2.31 \mathrm{kN}(\mathrm{~T})
$$

$$
\sum F x=0 ; \quad 2.309 \cos 60^{\circ}-\mathrm{F}_{B C}=0 \quad F_{B C}=1.154 \mathrm{kN}(\mathrm{C})
$$



Joint $D$ : Since $F_{C D}, F_{D E}$, and $F_{D E}$ lie within the same plane and $F_{D E}$ is out of this plane, then $F_{D E}=0$.

$$
\begin{gathered}
\sum F_{x}=0 ; \\
F_{D F}\left(\frac{1}{\sqrt{13}}\right)-2.309 \cos 60^{\circ}=0 \\
F_{D F}=4.163 \mathrm{kN}(\mathrm{C}) \\
\sum F_{y}=0 ;
\end{gathered} 4.163\left(\frac{3}{\sqrt{13}}\right)-F_{E D}=0, ~ F_{E D}=3.46 \mathrm{kN}(\mathrm{~T}) \mathrm{l}
$$

Ans.


